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SOME STATISTICAL ASPECTS OW WATIGUT TATLURE THROUGH
CRACK PROPAGATIOMN

by Earl J. Brown*
James R. Rice¥¥

Abstract
[/ 92>s7 /)

/ }
The objective of this work 1s to develop the elements of

a statistical approach to fatipue failure throuprh an analvsis
of prowth of fatiprue cracks to final faflure. Tt 1is assumned
that the loadings experienced by the cracked bodv and its ma-
terial properties are of a random nature., Using concents of
fracture mechanics and a fracture mechanics anproach to fa-
tigue crack nroparation,expressions are develoned for the
probability that a cracked body will survive a riven neriod

of loading without catastrophic failure, Pl

¥ N.A.S.A. Fellow, Lehigh University, Bethlehem, Pennsvlvania

*%¥,S,7. Tellow, Lehigh Universityv, Bethlehem, Pennsylvania




Statement of the Problem

Consider a cracked body loaded in some symmetric fashion

about the crack as shown in Fipuve 1.
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FIGUKE 1

The loadings shall be assumed to be provertional to scme na-

rameter, s = s(t), which varies in 2z random fashlcn witr tire

about a niean valve § as shovwn in Wipure 2.
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FIGURE 2,

The crack tip stress in:zenslity factor, k, for this con-

figuration and loading is obtained from & solution to the
relevant elastic boundary value oroblem {(1,2]. Coniur ron

the

-

linear elastle theory, k, can alwaivs be exnressed in
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in the form [1,3]
k = k(t) = s(t) f(a) (1)

where f(a) is some function of the crack lenpth, a, as ob-

tained from the elasticlity solution.

low, as the load, s(t), varies with time, the crack will
grow at some rate dependins on the statistical variation of
the stress intensity factor k(t),[h]. As the crack propresses,
the factor f(a) will in reneral increase. (onsequentlyv, the
magnitude of the variation of the stress intensitvy factor ex-
perienced at the crack tip will increase until finally k(t)
at some point in time exceeds the critical stress intensity

factor, k causing catastrophic fatlure. The critical in-

cr?

tensity factor, k may be reprarded as a statistically des-

cr?
cribed material constant (in the same sense as a vield stress

or ultimate stress).

The proposed nroblem i1s, therefore,of an inherentlv sta-
tistical nature in computing the probablilitv of the cracked
body surviving a given period of loading, the expected life-

time, and variance in lifetime.

Survival Probabilities

In the development to follow, it will be necessary to

have an expression for the probability, p(n), where

p(n) = Probability that the stress intensity factor,kn,
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experienced in the nth lcad peak of s(t) willl exceed the

critical stress intensity factor.
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1) seen to be the probanility that the nth load
peak wili be sufficiently frest to cause fatlure. Junnpese
that probapility densities for kr and kor are resrectively

i

(a) and E{g) where

ﬁr(a)da = Probability ac kn<a+du ()
1

~~
(W
-~

h(B8)dB = Proburtlitty < k LBHiB
C

Then, since the stress intensity fuctor in the nth lead peak

o

and the critical stress intensity factor are clearly lndepend-
ent, the product gn(a)h(B)dadB is the joint probabilityv that
a<kn<a+da and B<kcr<8+d8. By inteprating the joint probabil-

ity density over all area of the a8 plane for which a>8 (that

AY

is, over all points for which kK, >Kopi» One obtains the nrob-

v cr

ability p(n) that the stress intensity factor in the nth load
peak will be sufficiently frreat to cause failure. The rerion

of Interration 1s shown as the shaded area ﬂs in ™irure 3.
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Thus,

p(n) = fj Fa{a)b(B)dads (4)
AS

By carrylng out the intepration in different ways, either
of the followiny two equivilent esxpressicns can be used to

compute p{n):

to o +C
r ‘fr ~ ¢ . 5 )
= = c 3 { o
p(n) J g la Zgida)dajda \% gn(u)lrobzkcr<q}da (%)
+00 0 ) o0
Lo )‘ o f ) . -
= daddg = i { > yak i :
p(n) é;h(B){liﬁn(a)(gj 3 J B)Prokz 2 B5 A8, (6)

where it 1s noted that for physical reasons (kcr cannot be
negative) h(B) = 0 for 8 « 0, which permnits chanrFings the lower

l1imit of -« to a lower limit of O,

tlaving an expression for p(n), one can now nroceed to
compute the probability P(n) that failure will actually occur
in the nth load peak, and the probability ™{n) that the cracked

body will survive the first n load peaks. Obviouslv,

t1s

F(n) =1 - (1) (7

i

J=1

Let p(n}| no prior occurence) be the probabllity that the
nth load peak will be sufficiently rreat such that kn exceeds
the critical stress intensity factor, ;iven that no prior lcad

peak stress intensity factor exceeds the critical value. Then,

by the law of conditlonal probabillty,

(@]
~

P(n) = p(n| no prior occurence) "(n-1) (

-5 .
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4% . _ o(n) (14)

™e conditional probhabliliry atasterment eaulvalent to

equation {3} 1s now

P(n?&n = pinYdn “{n) {(1%)
By using enuation (18} and notinr arain that ™(0)=1, one has
L+ p(n) ™ = 0 with P(0) =1 (1F)

n

Thus, the solution for ™(n), the probability of surviving the

#
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is long as the marmnitude . the iload peak reauired to
cause fallure is sufficlently hirh, the heirhts of load peaks
af Interest may bhe conaldered uncorellated due tn thelr sta-

tistiecal raritv. Consenuentlyv, one mav azsume
n{n} no prior occarence) = n(n), (9)

vinere n{n) 1s as defined earitier.

Totimr that #{n) = ™ n.1-"{a), araatton {(3) can be re-

wirltten, 1in view o (9), as
(n) = {1~n(né}”in~]? (1)

T"his nrovides a rocurrencs relstion Tor "(n) 4in terrs
of ™(n-1). Py notins that {0} = 1, that is_, that the prob.

ability of survivine no loads 1s unity, one abtains for a

solution

]

n
™{n) 77j{1—v018 , (11}
):{

and from {(3) and (9),

>

(
P{n) = p{n) | zl-n(j)} (12)

a
1"
-~

"he precedine expressions are not narticulariy nar il
when one gonsiders very larce values of n, dne Fo the corpn.
tational difficulties Involved, This d1Cfirnlty ran be
avolided bv considerinr n as 2 continuous rather than a dfs-
crete variable., Then p(n) is corputed In the sa~e way as n

equations (4), (5) and (6), but is now » rrobability density

-6 -




first n load neanks, 1ls sirmplyv tus selutian of (16):

2]
™(n) = expl‘.gn(x)dx}, (173
( “o -
ard frarm (15) the prohabiiity density for the ccecurence of
frtlure is
- “n
A O .
"(nY = n{n) exne 2~J n(x:dxj 13y
o

An expression for the expectsrd number of load peaks al Tall-

ure, n, 1s obtatpad from (14 and an interraticon by parts
LR Kol
n o« }n RS - o Ydn {19)
< .

Tor +he variance from this exnected valus one has

e n
?i{(n«ﬁ)z} = ~)(nnﬁ‘;z"{n)drz = ?_fn P(n)in-n? (20)
[+

=3

nxpressions in Terms of Crack lLength

The exnressions developed »v p{n}, tre probability den-
sity rfor a load sufficiently rreat to canse failare, can be
rmost conveniently exnressed In terms of the cracl len~th, a,
instead of load peak nurber n. “'hen expressed In terms of

crack lenrth, let n(n) = p(a). Then

p(n)Ydn = n(a) 42 (21)

n
where 0 = G(a) = da/dn 1is the crack rrowth rate or, more

precisely, the ensemble averare crack extension prer load neak,

Present experimental evidence on crack prowth rates in-

dicates that 0 depends only on the variation of the stress




intensity factor k(t) experiaencs: at {he crack tio {57, Thus,

ra

for 8 rmiven randor 1l0ad parameter, s(t}, one can experimentallv

deatermine an exnression for 't in the fornm

N .
6-G6@) =2 5, { f)’ (22)
‘:

where the constants cy will denend only on materinl nronerties

Gr

and statlstical constants of the random load pararmeter ={t).
The usefulness of such an expression is that ffor two ecracked
bodies with loadingrs dlstrilaied diCferentiv ‘that 1o, with

different exnressions for {fvon 0 i 2t Lhe apre prandon

loay varameter s(t), equatior (22 will hol? for hoth erarked

v

bodies, once experirentally deterrined for one of them Tt
should also be mentioned that the inforrmation presentlv avall-
able on the nlasticityv near a crack tin Indicates that plastiz
effects vary with the snuare of the stress intensity factor,
thus it 1s 1ikely that only even powers should occeur In the

polynonial of enquation {(22).

Turning now to the computation of o(a), an exnression
will be developed for ”robikn>83 which apoears 1in equation

(6). Constder k(t) as a random time function, and define
r(6,y)dédy = Probability that s<k'(t)<&+dé and
y<k"(t)<y+dy, (23)
and
r(a,8,y)dadédy = Probabilityv that a<k(t)<a+da,

§<k'(t)<&+d6, and v<k"(t)<y+dy, (2%)

- 9 -




Then the vrobability that k the stress iIntensity factor

e

in the nth load peak, 1s rreater than 8 1s defined bv the con-

ditional probability statement
o lyldr w o ST

J j r(sv)deds Pfobf,&nw*} :L j J Y’(Q,?)Y)o’ﬁ'drd'q (25)

~ad TO ~< S

The triple interral on the rirht is the nrobnhilifty of havincs
a maximum in k(t) in some time interval dr with k(t)>g, and
the double inteprral on the left 1s the 3joint rrobability of

having a2 raximum in k(t) in =co-e time 1nterval dr, Prnb V> 8

is clearly the conditional probubtlite that, riven a maximum
in k(t), that k(t)>8. Upon rearranrement and an interration

on 6, o -to

Prob{® ’3} _ j,_& ¥ ¥ (,0,¥)d¥dx
{ n - - (26)

¥ rios) d¥
(4]

The inteprals in equation (26) are riven in "eference [6]
for the case of a stationary Gaussian process, The interral
in the denonminator is simply the expected number of maxira p

per unit time:

- Ji
J 5 r(o,0)dY = 51_,; /_‘iﬁ) (27)
o daa
where, d,, and d,, are the second and fourth moments resnec-

tively, of the power spectral density for k(t). The interral
in the numerator cannot be riven a closed fForm expression for
all values of 8, but an expression can be riven for larie B,
This will suffice since it can safely be assurmed that In the
period of rrowth of a fatirue crack the occurence of a value

- 10 -




kn rreater than kcr willl be 5 -~inoistdensl eartfty, anz thuys

corresnond to larre values of 8, The rezult Tor larve 8 is

o - OO i
. (‘ ; ,(g 'ﬁ , - &
J $7(=,0,8)d¥dec = L{ _512) &xpiu (p-R) ) (28)
? P4
’ 0 J lﬁ ¥ o H
whera dxl $3 the area spder She nower spoohral densite Tnare

k{t) (that 1s, the variance »f u{t}}, ani ¥ ts Lthe ~enn value
of k(t). Thus the exoressinn “or Probik _>8} tecores
»

, ETRNG CRY S
Prob§ Ku> @l = [ 232 5§ . AR-RKY (Pa)
o B A A Sl ol

TE Is now g sirnle muftter (o nut BBis epnpoosion into
terme involving the statisties o iLhe 1oad rarareter st}

»

and the crack lenpth, a. Sinece kit = a2t} (a), one has

k= § §() (20)

245

= {

du = LR, (71)

2 )

daa = {56 )
{323

2 yis)

(:333 = zgia)g {‘333
(33}

) 53

where d!x(s), dzz(s), and djjfofwre the geroth, second, and

fourth moments of the power spentral denntity for s(t)., lLet
u{w) be the nower spectral dencity far 5{t), ~uch that {7

052 1s the varlance of s(t), ane has

s 2 = () AW (38)
or = § w

L

Further, let we and &b be defined by

i ad
) —— Y \
da‘; = w; O’; = SO {,JQ %) (e3) dw (35)

- 11 -




and
dy;, -~ (Q: c—s“ = g Y H(m\ dw {36)
o

Then in view of the precedine seven equations, one has:

———

65 [8-3 g]? -
Prob { K« >$2 = {\ R }‘/2 expg\' 3(3'5’[@(&)]‘7 % (37)
Thus, where h(g) 1s the probability density for k n.,
B- 2 xw higy expi- L2 “NQ} A 3
PLO= Ttys . NP AR ETEI G b (38)

The preceding equatlion accormplishes the roal of exnress-

ing the probabllity density for an excess of kcw in terms of

crack lenpth a and the statistics of the load parameter s(t) -
Turning now to survival probablilities, define "(n) = "(alagy).
Recall that 7{(n) 1is the probability of survivin~ n lond peaks
or, in terms of crack lenrth and with the notation ”(a!ao),
the probability that the crack will reach a lenrth a without
unstable propagation, iiven that it had a lenyth a4 when the
loading bepan. 3y use of eauatlons (17) and (20), one obtains

for the survival probability
a

3 Ad
{ Pheallini®
F(&\ao) = €exp | &a P(Q) G (4) { (39)
For the probability density of fauilure P(n) = P(nfag),
one has, since P(ala,) =-"'(ala,), (frorm enuation (14) ).
() Cot L da
Palay = P exXP- & () —=— g 40
) = T P P Giay (40)

©

- 12 -




The expected crack length at faillure is
- oo
a- { Plalaya aa (1)
a,

and a similar formula follows for the variance of a at fail-

ure.

The preceding developments have shown that a complete
description of fallure statistics under random loadinrs 1is
avallable if one knows the two functions G(a) and p(a). The
former must at the present tilre be exnerirmentallv determined,
whereas, the latter can be predicted simply from a knowledre
of the function f(a), the statistics of the load parameter
s(t), and the density h(R) for k.

Cxpressions in Terms of fxperimentally Determined "aterial
Parameters

In view of the preceding theoretical descrintion, some
important abplications mav be cited. 1In the alrcraft industry,
inspection for presence of cracks Is sometlimes used to estimate
the residual 1life of structures subjlected to atmospheric tur-
bulence., This introduces two related problems: (1) If in-
herent cracks exist (a finite size but unseen) can the number
of load peaks required for the crack to rrow to an observable
length be predicted? (2) After detection, can the exvected
crack length at faillure or can a probability of surviving a
certain time be predicted? liopefully, the answers can be
obtained from equations (38), (39), {(40) and (41), which pro-
vide a means of analysis for these problems.

13-




Proceeding, 1t is observea that the probabilitv of sur-
vival "(alao,), equation (39), and the exnected crack lenrth
at failure a, equation (Y1), are functions of the probability
density, h(§), for k, , equatlon (38), It is considered that
experimental results for h($) can reasonaonly be expressed 1in
one of the three alternative wavs shown below (or cthers 1if

necessary) .

hig) hig)

—

Key ¢
delta S$unction )
(Key @ constant) normal distribulion
hig)
~ B
kCYi KCVI.

vectan%ulav distribution

FIGURE ¢

The probability density functlions in Iigure 4 can be ex-

pressed as:

gy = S18-K) { delta Sx_matich)
hig 8- Ker (i2)
L S
h‘%‘ = m EIF“ (—T%;\,) 2’ {rormal  dislr bution)
(43)



and \

for K < 8B« K
Kera = Kery ers < cra

hig) =
o ‘;OV $< KCY], a“d .%) Kc,yl (l}l‘)

{ Yectangular distribetion)

In the preceding equations, k., 1is the mean value of the
critical stress intensity factor and Q? is the varlance of

the normal distribution of the stress intensity factor.

It i1is now appropriate to consider each probability den-
sity function h($) individually to determine, p(&2), the
corresponding probability density for a load sufficiently
great to cause failure. In addition, for the case of h($§)
= 9(§- k¢y ) the probability of survival F(ala,) will also be
determined assuming G(a), equation 21, has a fourth power
dependence. Moreover, with p(a) known, one can at least
numerically intergrate equation (39) to determine F(a\a,) for

the remaining cases.

Case I: Consider h(§) = &(§~ks ). Then from equation
(38), p(a) =

[eo]

g.—— %’.‘ -K - [%_ g s(a)ll
(&)‘/1 S (8- Kev) e)(?% A o—s"\ [;;(aﬂai A-%

(]

Integrating,

| s _ ke - T8@D
PLa = Torye o F s‘ 2 0,0 | f@l* %

- 15 -
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Case II: The normal distribution for h(§€). Combining
equations (38) and (43) we obtain

o

-3
_ s \ 1 rg-3 sayd? j Ker) \
PO= T fr o, & || S ¢ 5 198 )

If one assumes h(§) 1s small except near the mean value,
k. o the 1imits of equation (46) may be extended over -o00<f« 409,
Combining the exponentlal terms and changing variable to

v =$-C1Lgives, i 7(_]; o
: Koy -5 104) I N
A0 W L expf LS } [ explav] o,
(W)t ¢ \57 Ag*r SHE) G [$a)’ L [av]

k3 by R
where ¢, = %t G [f(Q)]
R AN
Evaluating the integral and rearranging terms, one obtains

—_ 4 2
t 2 [ -
P = e N L72%.4..1 I (4D
(M )3 /+ ‘-"[HJ)J‘\ '2(053'* a;ab((aﬂ)

One would expect p(a) for h(f) a normal distribution to
reduce to p(a) for h(f) a delta function as a limiting case.
In equation (47), it is observed that with Gp=0, and k =~k .,

the normal distribution reduces to the sharp k, (delta function)

expression for p(a).

Case III: Combining equations (38) and (44), one obtains

—_— Kery
) 2 )
»@) -[——L—] ws - Le-s) SHT Y e
Ker, = Ker, (?I)?)i €re 20; [f(.?)]
Ker,

Squaring the term in the exponential and defining

- 16 -




K F ¥ F
S . Kev, -
& ENVS - :‘:;5- ~ Fvs
P - s, TY2 [ exe ] X }J/V)ﬂl expf-
/ TEIIE e e i = : }
\ (“;' )3. ey " KYIY/‘ 2 ‘e ’ at "r

aouation (46) 1s the standars {orr for the error
X

GY‘fK:

3|l
g
»
%
F‘\r\
&
V)
—~
S
~
T
-
]
D

Wis : (1w - F} 4 f
() 2 25 F T joerl{ xp_ 0 e y'f( .
(&) & va £VA FV3

5
K::‘,.‘ - K 2

Tunetjorn

5 .
/' i ()

KCY:,'KCT; - A
in the 1imit as (kﬂz Koy el nhe above exnreagton Uor
- ?
n{a), equatlon (46) or (49), should approach eaution {4%),

o show this, constder eqnatinon (43 5s
‘<.r,r'+/_53(-"ay;

W FVE - R
. . ) / ¢
£ T >, exp (s ) 1 )
f‘,/':;
- — o PRY
= ‘“"‘-i; 4 FYI oxy ;'* er T d; }g 2k
(LF)? ak TR £
wherefk = kkﬁf-ku, )
Then, ir {he 11uwit, ac Kep *xer
“""‘5 { L.
w ’ < {(‘32]
o{d) = ,‘:*::.,“i Lo EXp - -!‘K"- = %
L L 2 gl |

which is fdentical to ecuatlon (455,

The probability densivy (0} has now been do

.
o
—
e

—rt

terainerd for

three different probability densitules for h(B) of K. Rerall

equation {(39), that the probability of survival

as a function of p(a) and the crack prowth rate,

wis exoressed

n{a).




Thererore, 1f an exgression “or 303t enn pe determined, 1% 1is
gossible te find the rrobanilite of survivel 7 "1/:1.,},, fonslder

4 ecentral orask in an infirite sneal Cor ghich exrerirmental ine
YT s ¥
-2
Lf@)" by a® b
™ M

whevre hg is tbhe averige cf the Tourth poeer of the rises and

vesti-intons (843 have shoon () =

%

T T % e, & o s I T 4% =da ang B I
f.lls of the loue tipe histery sivy, fla) =y¥a ang 18 7

materinsl econstant. Substituting $his exnression For G{a) and

pia; Tov Came 1, enuabion i«a‘_:zlifzzm eguatior {799 yielos
F[’/‘ " ioik isf-‘}g’ J4 y
a a e PZ oo ’/4; N LT k™ J “% z{t‘*i
o) -
(w “}'& "‘f @ T Ty .

shere u represents o variable of intepration corresponding to

erack lenpth, a.

the

W1
hel
“$
¥

e:

W

“xpandine the exponential term 1n an infinlite

interral may pe expressan as

4

RS
[ f”) .S -f (e+b¢”> Aix
Ja @xp{ k*b ']J“~;X“ ( T i

o V4

} 4]

| =2 j (nl)ﬂ (c4 bx) A =

| 5 nigh (52)
xz¥dg

- * a
where k= ¢, b=-5, =2 Jg and u=x".

Then from [7]), equation (52) rives
an+a-4 ¢

. 9 ol 'Rl ; 3 i
j%exf{.(cﬂ\/&)’]@ - Q (-} (A0 (c+bx (_b)

n' N2 T {ﬂ‘H"X): ﬂ: (gnqgi) /xﬂﬂ?ﬂ',f




Combining equations (51) and (53) the probability of
survival becomes

Ji
an+a-A

- o n#/ N -
Ff*/@**f['[(%iﬁi]z(_f ) [Z(nﬂ)(Kcr‘S") "] }(Su)

he Ko (@G| £oH-0! 2! (20 43-0) X772 ]

Az0
x=VT,

Nn=o

Note that the probability density of failure P(afa, ),
equation (40), can be evaluated with the ald of equation (54).

Hence,

()
Plya,) = -g-(% F(d/2) (55)

To summarize, an expression for the probability of sur-
vival F(a/ao) has been determined for a sharply defined Kk y
for a given material. Should the stress intensity factor, k,
have a normal distribution or a plateau over a certaln range,
the corresponding probability density function p(a) has been
determined in a manner such as to allow numerical integration
to obtain the following:

(1) Probability of survival F(a/ao).
(2) Probability density of failure P(a/a,).

(3) Expected crack length a at failure.

- 19 -
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Tt asems advisable to dizcuss the necessary assunntions

to deserive Tallure statistic: in twe ~aterories: {a#)} Depri-

vation of tre yenerail eoxprecssions Jfor “silure statistics

{(p) conptational techniques for the cerepral ovoupations,

]
-

{(a) #ouatlons (39), (40) anz (41) Turnish the preneral
failure properties such ag:

1. 7The grovaptlivy fnar boe o ong ;1111 rench o lencth

a without ansh oo o tlon, ~iven that 1t had
a lenyth a, «wen oo it oeoing lee., “(ala ),
(¥

equation {14),
2. The expecte! craci len-th b Tulliure

)

conditions as in 1; l.e., 71, enquatton {#1;.

The déséription of failure stutistics depends on the ftunc-
tions G(a) and p{a). 7“he tern Sla) 1s an experirentally de-~
termined crack prowth rate law that aenends only on nateriul
properties and the function f{a) obtalned frorm the elasticity
solution for a riven confijuration. The term p(a) can be
aeterrined if one knows the function f(a), the statistics of
the load vararmeter s(t) and the protability density, hi{g), for
kcr” Tt should e noted that tne ejuations to desecribe the

f+ilure pronerties were derived usin concepts {or fracture

mechantias and fundamental nrobability theorv, The resylt

5

are true in peneral. ‘The aifficultly encountered in calcu-

o

tation 1y caused by an inabiliity ro predicht a -onernl criack
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fancttan),  The probabiiley £hat o orack w3l osesch o oa dlencin

agwlitnont gnotable prosaration, lven that 't noo o« Eiﬁfiﬁy

iy, when Loaaing bepgan, ”(aéig}, o he ernorzasy In seples

Fore given by equatien (A4, fithourh not oaleulated, the

proeeted arack lenrtn ot fotigre, o mifty b cetercipedd by

-
o

i
4

-

wwhecltiuting: eaquations {40}

avet orerUoareotn

the neceacary punerical inteprcation,

(11} Constder nlg) Tor k__ to be efther 7 nove 1 Jdis-

rethution or o constant over o short rancse Tgero outside L0

&

Crange .

The correspondin.g survival probability, woda )
may ve onhtalned by substitutinc eqastions (u7]
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may be obtained by substitutine enuations (47) and (49} re-
spectively into equation (39) and performing the necessary
nunierical integration. Similarly, the corresponding expected
crack length at fallure, a, mav be determined by resnectively
substituting equations (40) and (47), if h{(B) is a normal dis-

tribution, or (40) and (49), 1f h(

=

) is a constant over a2 short
range, into equation (41) and performing the necessary numerical

inte;ration.

This investigation his revealed areas where further

experimental research and veritication are necessary. Rellable

growth rate data for random loads would be helpful. 1In addition,

the relative importance of the varlance 062 of h(B8) should be

studied; i1.e., the presence of o ¢ 4n the survival propertv

B
equations may have little effect on the marnitudes of final
results. [Finally, computational techniques may be investipatecd

to determine the number of required terms to ensure sufficlent

convergence for reliable estimates of survival probability.

Any experimental prosram to verify results presented
here should use specimen of sufficlent size to ensure that
the plate 1s predominately elastic except for small nlastic

zones near the crack tip.
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